

Fine-grained Video-Text Retrieval with Hierarchical Graph Reasoning

Shizhe Chen¹, Yida Zhao¹, Qin Jin¹, Qi Wu²

¹Renmin University of China, ²University of Adelaide

Video-Text Cross-modal Retrieval

Text: a man pours oil into a preheated stir fry pan and then carefully add some raw chicken from a small bowel.

- Dominant approach: learning joint embedding space
 - Global visual-semantic matching
 - ② One vector is hard to encode fine-grained details
 - Local visual-semantic matching
 - 😕 Relationships between local vectors are not well captured via sequential modeling

Hierarchical Graph Reasoning Model (HGR)

- Multi-level Video-Text Matching
 - Event Global
 - Actions
 - Entities 🖡 Local
- Hierarchical Textual Encoding
 - Decompose sentence into semantic role graph
 - Capture relationships via graph reasoning
- Hierarchical Video Encoding
 - Guided by different levels of text to learn diverse video representations

Experiments

- In-domain Cross-modal Retrieval
 - Better performance across three datasets
- Cross-domain Generalization
 - Generalize better across datasets
- Fine-grained Binary Selection
 - Differentiate fine-grained difference between positive and negative sentences

Conclusion

- Decompose videos and texts into hierarchical semantic levels
- Utilize graph reasoning to generate hierarchical embeddings
- Evaluate on in-domain, cross-domain and fine-grained binary selection to demonstrate model's effectiveness

Codes and datasets will be released at: <u>https://github.com/cshizhe/hgr_v2t</u>

