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Figure 1. Image synthesize from retrieved examples. We propose the RetrieveGAN model that takes as input the scene graph description
and learns to 1) select mutually compatible image patches via a differentiable retrieval process and 2) synthesize the output image from the
retrieved patches.

Abstract

Image generation from scene description is an essential
task for controlled generation, which is beneficial to content
creation and image editing. In this work, we aim to synthe-
size images from scene description with retrieved patches
as reference. We propose a differentiable retrieval module.
With the differentiable retrieval module, we can (1) Make
the entire pipeline end-to-end trainable, enabling the learn-
ing of better feature embedding for retrieval. (2) Encourage
the selection of mutual compatible patches with additional
objective functions. We conduct extensive quantitative and
qualitative experiments to demonstrate that the proposed
method can generate realistic and diverse images, where
the retrieved patches are mutually compatible.

1. Introduction
Image generation from scene descriptions has received

considerable attention. Taking advantage of generative ad-
versarial networks (GANs), recent research employs condi-
tional GAN for the image generation task. There are vari-
ous conditional contexts such as scene graph [4], bounding
box [11], and text [8]. A stream of work has been driven by
parametric models that rely on the network to capture and
model the appearance of objects [4]. The other stream ex-
plores the semi-parametric model that leverages a memory
bank to aim the synthesizing process [9].

∗Equal contribution.

In this work, we focus on the semi-parametric models
that a memory bank is provided for the retrieval purpose.
Existing retrieval-based image synthesis methods have two
issues. First, the retrieval process usually requires pre-
defined embeddings. Since the retrieval process is non-
differentiable, the pre-defined embeddings are isolated from
the generation process and thus cannot guarantee the re-
trieved objects are suitable given the large variations of dif-
ferent datasets. Second, there are usually multiple objects to
be retrieved given a description. However, the conventional
retrieval process selects each patch independently and can-
not take the mutual relationship into consideration.

We propose RetrieveGAN, an image generation frame-
work with a differentiable retrieval process. With the pro-
posed differentiable retrieval design, the proposed Retrieve-
GAN is capable of retrieving image patches that 1) consid-
ers the surrogate image generation quality, and 2) are mutu-
ally compatible for synthesizing a single image.

We evaluate the proposed methods through extensive
qualitative, quantitative experiments, and user preference
study. With the proposed approach, we show that 1) the
generated images are realistic, and 2) the retrieved patches
are mutually compatible.

2. RetrieveGAN

Our goal is to synthesize a realistic image x ∈ RH×W×3

from the input scene graph g by compositing appropriate
image patches retrieved from the image patch bank. As
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Figure 2. Method overview. (a) The approach takes as input the scene graph description and sequentially performs scene graph encoding,
patch retrieval, and image generation to synthesize the desired scene image. (b) Given a set of candidate patches, we first extract the
corresponding patch features using the patch embedding function. We then randomly select a patch feature as the query feature for the
iterative retrieval process. At each step of the iterative procedure, we select the most compatible patch compared to the already selected
patches. The iteration ends as all the objects are assigned with a selected patch.

the overview shown in Figure 2, the proposed Retrieve-
GAN framework consists of three stages: scene graph en-
coding, patch retrieval, and image generation. We adopt the
strategies in the PasteGAN [9] approach for the scene graph
encoding and image generation stages, while introduce the
proposed patch retrieval phase as follows.

2.1. Patch Retrieval

The patch retrieval aims to select a number of mutually
compatible patches for synthesizing the final image. We il-
lustrate the overall process on the bottom side of Figure 2.
We first pre-filtered the candidate patches {M(oi)}n

i=1 for
each object oi using the pre-trained graph convolutional net-
work features in sg2im [4]. We then use a patch embedding
function Ep to extract the patch features. Starting with a
randomly sampled patch feature as a query, we propose an
iterative retrieval process to select compatible patches for
all objects. In the following, we first describe how a single
differentiable retrieval is operated. The proposed iterative
retrieval process is then introduced. Finally, we illustrate

the objective function used to facilitate the training of the
patch retrieval module.

Differentiable retrieval for a single object. Given the
query feature f qry, we aim to sample a single patch from
the candidate set M(o) = {p1, p2, · · · , pk} for object o. Let
π ∈Rk

>0 be the categorical variable with probabilities P(x=
i) ∝ πi which indicates the probability of selecting the i-th
patch from the bank. To compute πi, we calculate the `2
distance between the query feature and the corresponding
patch feature, namely πi ∝ −‖ fqry−Ep(pi;θEp)‖2, where
Ep is the embedding function and θEp is the learnable mode
parameter. The intuition is that the candidate patch with
smaller feature distance to the query feature should be sam-
pled with higher probability. Through learning θEp , we
hope our model to retrieve compatible patches guided by
our loss functions. As we are sampling from a categorical
distribution, we use the Gumbel-Max trick [3] to sample a
single patch:

argmax
i
[P(x = i)]=argmax

i
[gi + logπi]=argmax

i
[π̂i], (1)



where gi =− log(− log(ui)) is the re-parameterization term
and ui ∼ Uniform(0,1). To make above process differen-
tiable, the argmax operation is approximated with the con-
tinuous softmax operation: s = softmax(π̂) = exp(π̂i/τ)

∑
k
q=1 exp(π̂q/τ)

,

where τ is the temperature controlling the degree of the ap-
proximation.

Iterative differentiable retrieval for multiple objects.
Rather than retrieving only a single image patch, the pro-
posed framework needs to select a subset of n patches for
the n objects defined in the input scene graph. We there-
fore adopt the weighted reservoir sampling method [7] to
perform the subset sampling from the candidate patch sets.
Without loss of generality, denote M = {pi|i = 1, . . . ,n×k}
as the multiset (with possible duplicated elements) consist-
ing of all candidates patches in which n is the number of
objects, and k is the size of each candidate patch set.

We first compute the vector π̂i defined in (1) for all
patches. We then iteratively apply n softmax operations
over π̂ to approximate the top-k selection. Let π̂

( j)
i de-

note the probability of sampling patch pi at iteration j and
π̂
(1)
i ← π̂i. The probability is iteratively updated by:

π̂
( j+1)
i ← π̂

( j)
i + log(1− s( j)

i ), (2)

where s( j)
i = softmax(π̂( j))i. Essentially, (2) sets the en-

try of selected patch to negative infinity thus ensuring this
index will not be selected again. After n iterations, we com-
pute the relaxed n-hot vector s = ∑

n
j=1 s( j), where si ∈ [0,1]

indicates the score of selecting the i-th patch, and we have
∑
|M|
i=1 si = n. The entire process is differentiable with respect

to the model parameters (i.e. θEp ).
We make several modifications to the iterative process

based on practical consideration. First, our candidate mul-
tiset M = {pi}n×k

i=1 is formed by n groups of pre-filtered
patches for n objects. In addition, to incorporate the prior
knowledge that compatible images patches tend to lie closer
in feature space, we adopt a greedy strategy to encourage se-
lecting image patches that are compatible with the already
selected ones. We detail this process in Figure 2(b).

2.2. Training Objective Functions

Ground-truth selection loss. As the ground-truth patches
are available at the training stage, we add them to the can-
didate set M. Given one of the ground-truth patch features
as the query feature f qry, the ground-truth selection loss Lsel

gt
encourages the retrieval process to select the other ground-
truth patches from the same image.

Co-occurrence penalty. We design a co-occurrence loss
to ensure the mutually compatible between the retrieved
patches. Given a set of retrieved patches, we minimize the

Table 1. Quantitative comparisons. The first row shows the re-
sults of models that predict bounding boxes during inference time.
The second row shows the results of models that take ground-truth
bounding as inputs during inference time.

Datasets COCO-Stuff Visual Genome

FID ↓ IS ↑ DS ↑ FID ↓ IS ↑ DS ↑
sg2im [4] 136.8 4.1±0.1 0.02±0.0 126.9 5.1±0.1 0.11±0.1

AttnGAN [8] 72.8 8.4±0.2 0.14±0.1 114.6 10.4±0.2 0.27±0.2

PasteGAN [9] 59.8 8.8±0.3 0.43±0.1 81.8 6.7±0.2 0.30±0.1

RetrieveGAN 43.2 10.6±0.6 0.34±0.1 70.3 7.7±0.1 0.24±0.1

sg2im (GT) 79.9 8.5±0.1 0.02±0.0 111.9 5.8±0.1 0.13±0.1

layout2im [11] 45.3 10.2±0.6 0.29±0.1 44.0 9.3±0.4 0.29±0.1

PasteGAN (GT) 54.9 9.6±0.2 0.38±0.1 68.1 6.7±0.1 0.28±0.1

RetrieveGAN (GT) 42.7 10.7±0.1 0.21±0.1 46.3 9.1±0.1 0.23±0.1

real data 6.8 24.3±0.3 - 6.9 24.1±0.4 -

pair-wise distance on the co-occurrence space, namely

Lsel
occur = ∑

i, j
d(Foccur(pi),Foccur(p j)), (3)

where the mapping function Foccur is pre-trained via con-
trasting learning.

Domain adversarial loss. We use two discriminators Dimg
and Dobj to encourage the realism of the generated images
on the image-level and object-level, respectively.

Limg
adv = Ex[logDimg(x)]+Ex̂[log(1−Dimg(x̂))],

Lobj
adv = Ep[logDobj(p)]+E p̂[log(1−Dobj(p̂))],

(4)

where x and p are respectively denoted as the real image and
patch, while x̂ and p̂ respectively represent the generated
image and the patch crop from the generated image.

Bounding box regression loss Lbbx. We penalize the pre-
diction of the bounding box coordinates with the `1 dis-
tance.

Image reconstruction loss Limg
recon. Given the ground-truth

patches and the ground-truth bounding box coordinates, we
use the `1 distance to encourage the generation module to
reconstruct the ground-truth image.

The full loss functions for training our model is:

L =λ
sel
gt Lsel

gt +λ
sel
occurL

sel
occur +λ

img
adv Limg

adv +λ
img
reconLimg

recon+

λ
obj
advLobj

adv +λbbxLbbx,
(5)

where λ controls the importance of each loss term.

3. Experimental Results

Datasets. We use the standard scene generation bench-
mark datasets, COCO-Stuff [1] and Visual Genome [5], in
all experiments. Except for the image resolution which
is 128× 128, we follow the protocol in sg2im [4] to pre-
process and split the dataset.

Evaluated methods. We compare the proposed approach
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Figure 3. Retrieved patches. For each sample, we show the re-
trieved patches which are used to guide the following image gen-
eration process. We also show the original image of each selected
patch for more clear visualization.
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Figure 4. User study. We conduct user the study to evaluate the
mutual compatibility of the selected patches.

to the sg2im[4], AttnGAN [8], layout2im [11], and Paste-
GAN [9] schemes in the experiments.
Evaluation Metrics. We use the IS [6] (realism), FID [2]
(realism and diversity), DS [10] (Diversity) scores as the
evaluation metrics.

3.1. Quantitative Evaluation

Realism and diversity. We conduct the evaluation using
two different settings. First, bounding boxes of objects are
predicted by models. Second, ground-truth bounding boxes
are given as inputs in addition to the text or scene graph.
The results of these two settings are shown in the first and
second row of Table 1, respectively. Since the patch re-
trieval process is optimized to consider the generation qual-
ity during the training stage, our approach performs favor-
ably against the other algorithms in terms of realism.
Patch compatibility. To evaluate the compatibility be-
tween the retrieved patches, we conduct a user study. For
each scene graph, we present two sets of patches selected
by different methods, and ask user “which set of patches
are more mutually compatible and more likely to exist in
the same image?”. Figure 4 presents the results of the user
study. The proposed method outperforms PasteGAN, which
uses the pre-defined patch embedding function to perform
the retrieval. The results also validate the usefulness of the
ground-truth selection loss and the co-occurrence loss.

3.2. Qualitative Evaluation

To better visualize the source of retrieved patches, we
present the generated images as well as the original images
of selected patches in Figure 3. The proposed method can
tackle complex scenes where multiple objects are present.
With the help of selected patches, each object in the gener-
ated images has a clear and reasonable appearance (e.g. the

boat in the second row and the food in the third road). Most
importantly, the retrieved patches are mutually compatible
thanks to the iterative retrieval process with the differen-
tiable retrieval module. As shown in the first example in
Figure 3, the selected patches are all related to baseball. In
contrast, the PasteGAN method has chances to select irrel-
evant patches (i.e. the soccer player).

4. Conclusions
In this work, we propose a differentiable retrieval mod-

ule to aid the image synthesis from the scene description.
The differentiable property enables the module to learns a
better embedding function with the image generation pro-
cess. Moreover, through the iterative process, the retrieval
module selects mutually compatible patches as reference for
the generation. Qualitative and quantitative evaluations val-
idate that the synthesized images are realistic while the re-
trieved patches are compatible.

References
[1] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Coco-

stuff: Thing and stuff classes in context. In CVPR, 2018.
3

[2] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. GANs trained by
a two time-scale update rule converge to a local nash equi-
librium. In NIPS, 2017. 4

[3] Eric Jang, Shixiang Gu, and Ben Poole. Categorical repa-
rameterization with gumbel-softmax. 2017. 2

[4] Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image genera-
tion from scene graphs. In CVPR, 2018. 1, 2, 3, 4

[5] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson,
Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalan-
tidis, Li-Jia Li, David A Shamma, et al. Visual genome:
Connecting language and vision using crowdsourced dense
image annotations. IJCV, 123(1):32–73, 2017. 3

[6] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki
Cheung, Alec Radford, and Xi Chen. Improved techniques
for training gans. In NIPS, 2016. 4

[7] Sang Michael Xie and Stefano Ermon. Reparameterizable
subset sampling via continuous relaxations. 2019. 3

[8] Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang,
Zhe Gan, Xiaolei Huang, and Xiaodong He. Attngan: Fine-
grained text to image generation with attentional generative
adversarial networks. In CVPR, 2018. 1, 3, 4

[9] LI Yikang, Tao Ma, Yeqi Bai, Nan Duan, Sining Wei, and
Xiaogang Wang. Pastegan: A semi-parametric method to
generate image from scene graph. In NeurIPS, 2019. 1, 2, 3,
4

[10] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 4

[11] Bo Zhao, Lili Meng, Weidong Yin, and Leonid Sigal. Image
generation from layout. In CVPR, 2019. 1, 3, 4


