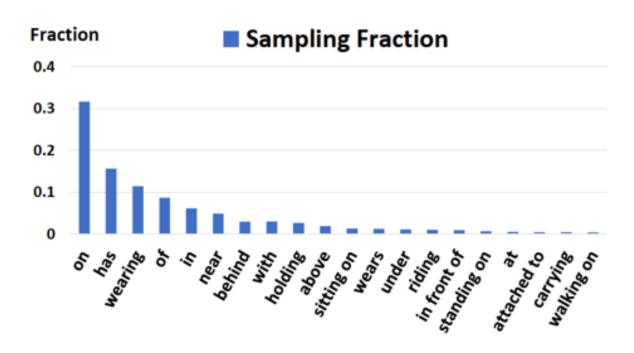


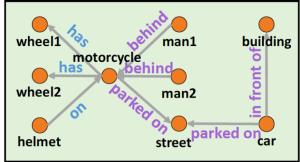
Unbiased Scene Graph Generation from Biased Training

Kaihua Tang¹, Yulei Niu³, Jianqiang Huang^{1,2}, Jiaxin Shi⁴, Hanwang Zhang¹ ¹Nanyang Technological University, ²Damo Academy, Alibaba Group, ³Renmin University of China, ⁴Tsinghua University

Github: https://github.com/KaihuaTang/Scene-Graph-Benchmark.pytorch

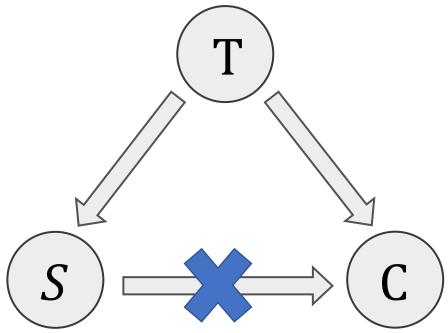

Contents

- Motivation
- Three Steps Towards the Unbiased Inference:
 - Causal Graph
 - Counterfactual Thinking
 - Total Direct Effect
- Advantages
- Quantitative Results
- Qualitative Examples



Motivation

- Existing Problems of SGG
 - a) Long-Tailed Distribution of Dataset
 - b) Trivial Predicates for Dominating Relationships



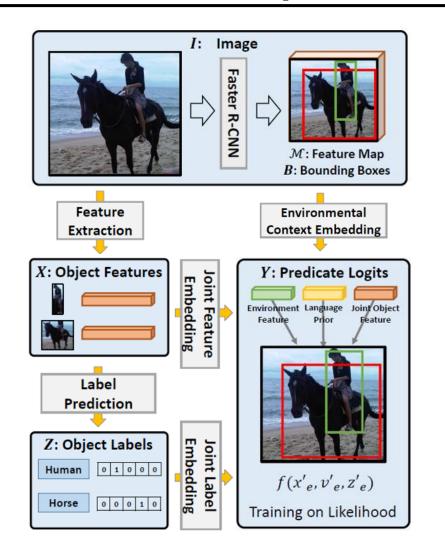
(a) Distribution of Predicates in VisualGenome (b) Example of the Proposed Unbiased SG

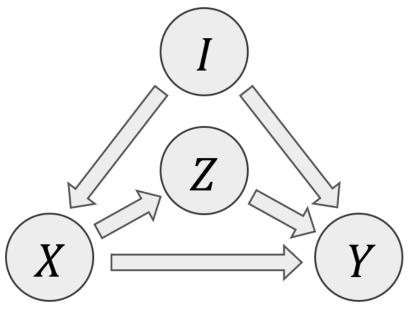
Prerequisite: Causal Graph

• Definition: Causal Graph (a.k.a., structural causal model) is a directed acyclic graph $G = \{N, E\}$, indicating how a set of variables N interact with each other through the causal link E.

(S): Ice-cream Sales

C: Crime


Common Strategy: Take as much related inputs as possible.

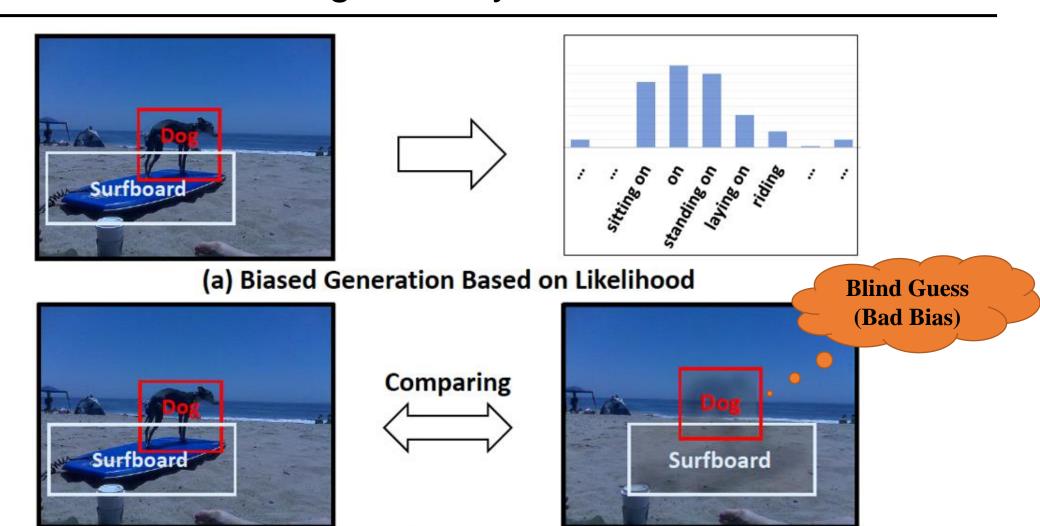

[1] Judea Pearl, Dana Mackenzie, The Book of Why

[2] Judea Pearl, Madelyn Glymour, and Nicholas Jewell, Causal Inference in Statistics: A Primer

Step 1

Causal Graph of SGG: The Road Map

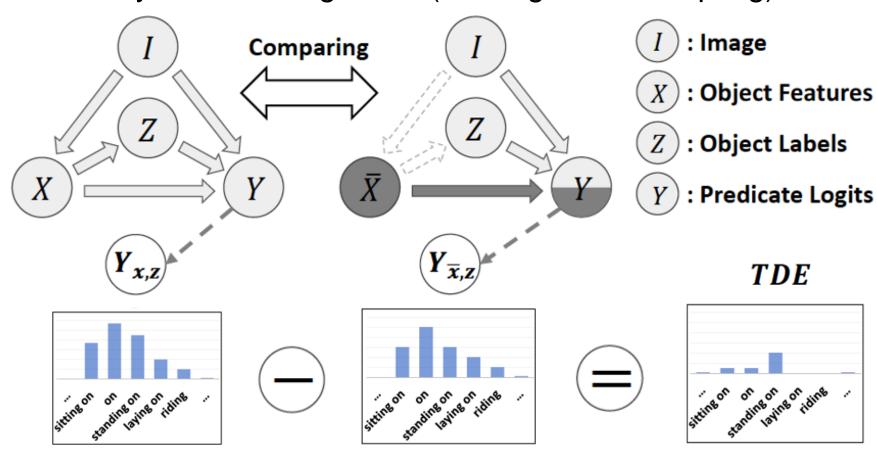
Valid edge can still be the shortcut

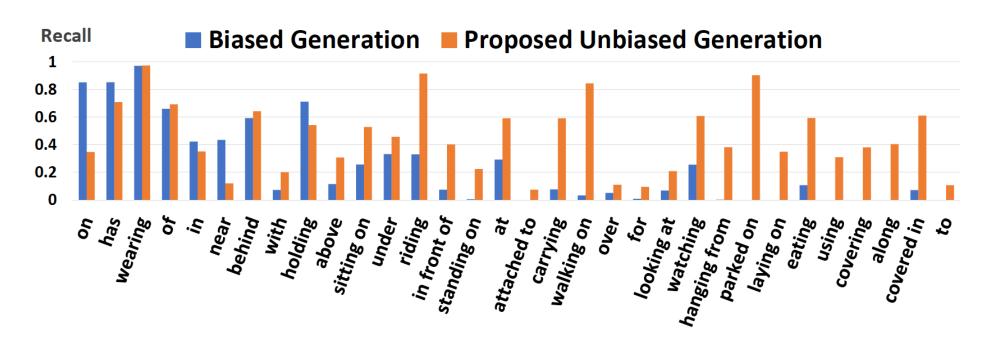

I: Image

(Z): Object Labels

X: Object Features Y: Predicate Logits

Step 2


Counterfactual Thinking: Identify the Source of Bias


(b) An Intuitive Example of Counterfactual Thinking

Total Direct Effect (TDE): Unbiased Inference

➤ Note that the training is still conventional biased training without any re-balancing tricks (re-weight / re-sampling).

Advantages

• Advantages:

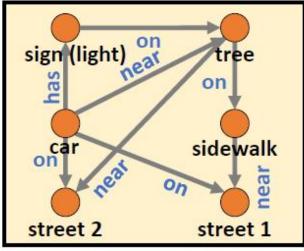
- Model-Agnostic: Consistent improvements across different models and fusion functions.
- **Simple**: Respecting the conventional biased training.
- Effective: Significantly improving mean Recall@K, Zero-Shot Recall@K, Sentence-to-Graph Retrieval

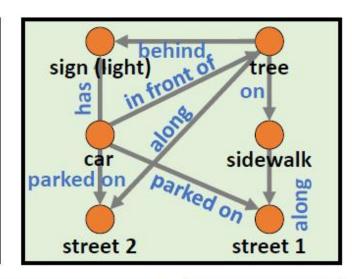
Quantitative Results: Mean Recall@K

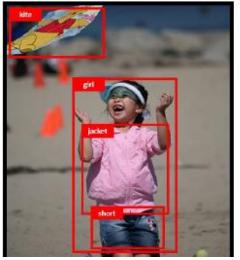
			Predicate Classification			Scene Graph Classification			Scene Graph Detection		
Model	Fusion	Method	mR@20	mR@50	mR100	mR@20	mR50	mR100	mR@20	mR50	mR100
IMP+	-	-	-	9.8	10.5	-	5.8	6.0	-	3.8	4.8
FREQ	-	-	8.3	13.0	16.0	5.1	7.2	8.5	4.5	6.1	7.1
MOTIFS	-	-	10.8	14.0	15.3	6.3	7.7	8.2	4.2	5.7	6.6
KERN	-	-	-	17.7	19.2	-	9.4	10.0	-	6.4	7.3
VCTree	-	-	14.0	17.9	19.4	8.2	10.1	10.8	5.2	6.9	8.0
		Baseline	11.5	14.6	15.8	6.5	8.0	8.5	4.1	5.5	6.8
		Focal	10.9	13.9	15.0	6.3	7.7	8.3	3.9	5.3	6.6
		Reweight	16.0	20.0	21.9	8.4	10.1	10.9	6.5	8.4	9.8
	SUM	Resample	14.7	18.5	20.0	9.1	11.0	11.8	5.9	8.2	9.7
		X2Y	13.0	16.4	17.6	6.9	8.6	9.2	5.1	6.9	8.1
MOTIFS [†]		X2Y-Tr	11.6	14.9	16.0	6.5	8.4	9.1	5.0	6.9	8.1
		TE	18.2	25.3	29.0	8.1	12.0	14.0	5.7	8.0	9.6
		NIE	0.6	1.1	1.4	6.1	9.0	10.6	3.8	5.1	6.0
		TDE	18.5	25.5	29.1	9.8	13.1	14.9	5.8	8.2	9.8
	GATE	Baseline	12.2	15.5	16.8	7.2	9.0	9.5	5.2	7.2	8.5
		TDE	18.5	24.9	28.3	11.1	13.9	15.2	6.6	8.5	9.9
VTransE [†]	SUM	Baseline	11.6	14.7	15.8	6.7	8.2	8.7	3.7	5.0	6.0
		TDE	17.3	24.6	28.0	9.3	12.9	14.8	6.3	8.6	10.5
v HallsE	GATE	Baseline	13.6	17.1	18.6	6.6	8.2	8.7	5.1	6.8	8.0
		TDE	18.9	25.3	28.4	9.8	13.1	14.7	6.0	8.5	10.2
VCTree [†]	SUM	Baseline	11.7	14.9	16.1	6.2	7.5	7.9	4.2	5.7	6.9
		TDE	18.4	25.4	28.7	8.9	12.2	14.0	6.9	9.3	11.1
v C Hee	GATE	Baseline	12.4	15.4	16.6	6.3	7.5	8.0	4.9	6.6	7.7
		TDE	17.2	23.3	26.6	8.9	11.8	13.4	6.3	8.6	10.3

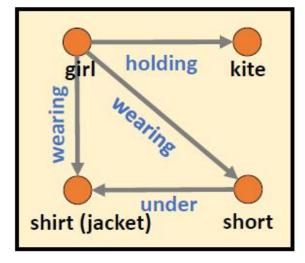
Quantitative Results: Zero-Shot & Retrieval

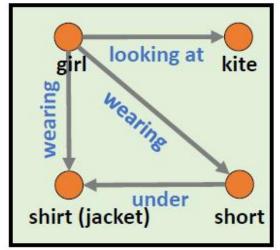
Zero-Shot Relationship Retrieval			PredCls	SGCls	SGDet	
Model	Fusion	Method	R@50/100	R@50/100	R@50/100	
MOTIFS [†]		Baseline	10.9 / 14.5	2.2 / 3.0	0.1 / 0.2	
		Focal	10.9 / 14.4	2.2 / 3.1	0.1 / 0.3	
		Reweight	0.7 / 0.9	0.1 /0.1	0.0 / 0.0	
		Resample	11.1 / 14.3	2.3 / 3.1	0.1 / 0.3	
	SUM	X2Y	11.8 / 17.6	2.3 / 3.7	1.6 / 2.7	
	SUM	X2Y-Tr	13.7 / 17.6	3.1 / 4.2	1.8 / 2.8	
		TE	14.2 / 18.1	1.4 / 2.0	1.4 / 1.8	
		NIE	2.4 / 3.2	0.2 / 0.4	0.3 / 0.6	
		TDE	14.4 / 18.2	3.4 / 4.5	2.3 / 2.9	
	GATE	Baseline	7.4 / 10.6	0.9 / 1.3	0.2 / 0.4	
	UAIE	TDE	7.7 / 11.0	1.9 / 2.6	1.9 / 2.5	
VTransE [†]	SUM	Baseline	11.3 / 14.7	2.5 / 3.3	0.8 / 1.5	
	SUM	TDE	13.3 / 17.6	2.9 / 3.8	2.0 / 2.7	
	CATE	Baseline	4.2 / 5.9	1.9 / 2.6	1.9 / 2.6	
	GATE	TDE	5.3 / 7.9	2.1 / 3.0	1.9 / 2.7	
VCTree [†]	CLIM	Baseline	10.8 / 14.3	1.9 / 2.6	0.2 / 0.7	
	SUM	TDE	14.3 / 17.6	3.2 / 4.0	2.6 / 3.2	
	CATE	Baseline	4.4 / 6.8	2.5 / 3.3	1.8 / 2.7	
	GATE	TDE	5.9 / 8.1	3.0 / 3.7	2.2 / 2.8	
			•	•	-	

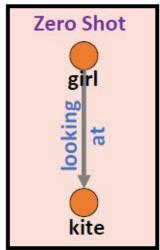

Sentence-to-Graph Retrieval									
Gallery Size				1000		5000			
Model	Fusion	Method	R@20	R@100	Med	R@20	R@100	Med	
MOTIFS [†]		Baseline	11.6	39.9	155	3.1	12.1	708	
		Focal	10.9	39.0	163	2.9	11.1	737	
	SUM	Reweight	9.7	36.8	159	3.0	11.4	725	
		Resample	13.1	43.6	124	2.5	13.4	593	
		X2Y	14.3	44.8	125	3.5	14.6	556	
		X2Y-Tr	14.5	45.6	114	3.9	16.8	525	
		TE	15.9	49.9	100	4.4	16.9	469	
		NIE	6.7	29.2	202	1.6	8.6	1050	
		TDE	17.0	53.6	91	5.2	18.9	425	
	GATE	Baseline	13.7	45.6	143	4.4	16.2	618	
	UATE	TDE	20.8	59.2	72	5.2	21.3	325	
VTransE [†]	CLIM	Baseline	12.3	42.3	129	3.6	15.0	596	
	SUM	TDE	14.7	48.4	106	3.6	16.3	483	
	GATE	Baseline	12.9	41.8	136	3.8	14.3	634	
	UAIE	TDE	18.5	50.4	110	4.5	19.1	486	
VCTree [†]	CLIM	Baseline	9.9	37.4	150	3.1	11.5	745	
	SUM	TDE	19.0	57.0	82	5.0	20.0	385	
	CATE	Baseline	13.4	44.1	121	3.7	13.6	583	
	GATE	TDE	19.1	55.5	87	5.1	20.3	395	


Zero-Shot Recall@K


SG-Based Retrieval


Qualitative Examples





Thank You

Code Link

Paper Link

