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Abstract

We are enveloped by stories of visual interpretations in
our everyday lives. Story narration often comprises of two
stages, which are, forming a central mind map of entities
and then weaving a story around them. In this paper, we
address these two stages of introducing the right entities at
seemingly reasonable junctures and also referring them co-
herently in the context of visual storytelling. The building
blocks of the central mind map, also known as entity skele-
ton are entity chains including nominal and coreference ex-
pressions. We establish a strong baseline for skeleton in-
formed generation and propose a glocal hierarchical atten-
tion model that attends to the skeleton both at the sentence
(local) and the story (global) levels. We observe that our
proposed models outperform the baseline in terms of auto-
matic evaluation metric, METEOR. We also conduct human
evaluation from which it is concluded that the visual stories
generated by our model are preferred 82% of the times.

1. Introduction

“You’re never going to kill storytelling because it’s
built in the human plan. We come with it.” - Margaret
Atwood

Storytelling in the age of artificial intelligence is not sup-
posed to be a built-in capability of humans alone. With
the advancements in interacting with virtual agents, we are
moving towards sharing this creative and coherent ability
with machines as well. The evolution of storytelling spans
from primordial ways of cave paintings and scriptures to
contemporary ways of using multiple modalities, such as
visual, audio and textual narratives. We address narrating a
story from visual input, also known as visual story telling
[12]. Generating textual stories from a sequence of images
has gained traction very recently [8, 11, 13, 15, 21, 3]. Sto-
ries can be perceived as revolving around characters [17],
events/actions [22, 19, 21], or theme [7]. Emulating a nat-
urally generated story requires equipping machines to learn
where to introduce entities, and more importantly, how to
refer to them henceforth. The main task addressed in this

paper is to introduce entities similar to how humans do and
more importantly, referring them appropriately in subse-
quent usage for stories from images. We perform this in
two phases: (1) Entity Skeleton Extraction, and (2) Skele-
ton Informed Generation. Here, a skeleton is defined as
a simple template comprising of the entities and their re-
ferring expressions extracted using off-the-shelf NLP tools.
This entity skeleton is also represented in different levels
of abstractions to compose a generalized frame to weave
the story. The entities can be reliably extracted from image
captions which when used in conjunction with images result
in a better coherent story.

2. Related Work

Visual Storytelling: [12] proposed visual storytelling
dataset, comprising of sequences of story-like images with
corresponding textual descriptions in isolation and stories
in sequences. [13] proposed a seq2seq framework and [24]
proposed late fusion techniques to address this task. We de-
rive motivation from these techniques to introduce entities
and references as skeletons. [20, 14] explored the task of
generating a sequence of sentences for an image stream. [1]
and [14] addressed syntactic and semantic coherence while
our work is focused on content relevance.

Schema based generation: [9] was one of the initial
works delving into how entities and their referring expres-
sions are used in a discourse. Several efforts for narrative
generation tasks have spawned from introducing a schema
or a skeleton. While [17, 4, 2] explored using event repre-
sentations, [5, 6, 26] proposed hierarchical frameworks for
topically guided story. [25] used reinforcement learning to
first generate skeleton (the most critical phrases) and then
expand the skeleton to a complete sentence. Our work falls
along the lines of generating a story from visual input based
on entity skeletons.

3. Data Description

The visual storytelling is proposed as a multimodal
grounded sequential generation dataset [12]. For-
mally, the dataset comprises of visual stories S =
{S1,...,Sn}.  Each story in the dataset consists



Sentences from SIS Surface Nominalized Abstract Surface Nominalized Abstract
The cake was amazing for this event! None [0, 0] None event [1,0] other
The bride and groom were so happy. The bride and groom  [1, 0] person None [0, 0] None
They kissed with such passion and force. They [1,1] person None [0, 0] None
When their son arrived, he was already sleeping. | their [1,1] person None [0, 0] None
After the event, I took pictures of the guests. None [0, 0] None event [1,0] other

Table 1. Examples of three forms of Entity-Coreference Schema Representation

of a sequence of five story-like images, along with
descriptions-in-isolation (DII) and stories-in-sequences
(SIS). Each story can be formally represented as S; =

(I, 2y, (@ 2y ) where 17, 2
and yi(j ) are each image, single sentence in DII and single
sentence in SIS respectively, and i refers to the ith exam-
ple story. SIS and DII are supposed to be associated with
each image, shown in Table 2. For the images for which
the DII are absent, we use a pre-trained image captioning
model [23] to make the dataset complete for our use case.

Train Val Test
# Stories 40,155 4,990 5,055
# Images 200,775 24,950 25,275

# withno DII 40,876 4,973 5,195
Table 2. Details of the Dataset

4. Model Description

Our approach of using entity skeletons to generate a co-
herent visual story is divided into two phases: (1) Entity
Skeleton Extraction, and (2) Skeleton Informed Generation.
We will be releasing the codebase.

4.1. Entity Skeleton Extraction

The task is to introduce the characters in right times and
refer to them appropriately henceforth. This means that we
not only target the head mention of an entity but also cater to
the corresponding appropriate coreference expressions. We
define the skeleton as a linear chain of entities and their cor-
responding referring expressions. We first extract the coref-
erence chains from the textual stories that are made up of
SIS in the training data. This is done by using version 3.7.0
of Stanford CoreNLP toolkit [16]. These three ways of rep-
resenting skeletons are described in detail next. An example
of the three forms are depicted in Table |
1. Surface form Coreference Chains: The skeleton for
each story is represented as {ci,...,cs5}, where c; is the
coreference word in jth sentence. The skeleton word is
None when there is no word corresponding to that coref-
erence chain in that sentence.

2. Nominalized Coreference Chains: This form disinte-
grates the properties of presence and absence of the entity
words and whether the word is present in the noun or the
pronoun form. The skeleton for each story is represented as
{[h,p]1,--.,[h,p]5}. Here, h € {0,1}, is a binary variable
indicating if there is a coreference mention, i.e 1 if there is
a mention in the skeleton chain and O if it is None. Simi-

Models Entity Meteor Dist. Avg#
Forms entities
Baseline None 27.93 1.02 04971
+Entities Surface 27.66 1.02 0.5014
MTG («(0.5)) Surface 27.44 1.02  0.9554
MTG («(0.4)) Surface 27.59 1.02  1.1013
MTG (a(0.2)) Surface 27.54 1.01  0.9989
MTG («(0.5)) Nominal  30.52 1.12  0.5545
MTG («(0.5)) Abstract  27.67 1.01  0.5115
Glocal Attention  Surface 28.93 1.01  0.8963

Table 3. Automatic Evaluation of Story Generation Models
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Figure 1. Architecture of Glocal Hierarchical Attention on Entity
skeleton coreference chains to perform Visual Storytelling

larly, p € {0,1} is a binary variable indicating that the word
is head mention i.e, the word is in the noun form if it is O
and pronoun form if it is 1.

3. Abstract Coreference Chains: Thi s form represents
entities in abstract categories such as person, object, loca-
tion etc., We use Wordnet [ 18] to derive these properties.

4.2. Schema Informed Generation

In this section, we describe a baseline and a second base-
line that accesses the skeleton information for fair compar-
ison. We then move onto discussing two models that incor-
porate the three forms of entity skeletons.

For simplicity in formal representation, we use the fol-
lowing notations. ¢ and 7 indicates the t*" step or sentence
in a story and 7' word within the sentence respectively.
I;, xy, yi, represent image, DII, SIS for a particular time
step. k; is the skeleton coreference element for that par-



ticular sentence. Here k can take any of the three forms
of coreference chains discussed previously, which is word
itself (surface form) or a pair of binary digits (nominaliza-
tion) or noun properties (abstract). Note that k is not used
in this baseline model.

1. Baseline Model:  Our baseline model has an encoder-
decoder framework that is based on the best performing
model in the Visual Story Telling challenge in 2018 [13] that
attained better scores on human evaluation metrics. Image
features are extracted from the penultimate layer of ResNet-
152 [10]. The encoder part of the model is represented
as the following which comprises of two steps of deriving
the local context features [* and the hidden state of the ¢!
timestep of the BILSTM that gives the global context.

l; = ResNet(I)

gt = Bl-LSTM([ll, l2...l5]t)

The latent representation obtained from this encoder is
the glocal representation [l;, g;], where [..] represents aug-
mentation of the features. This glocal vector is used to de-
code the sentence word by word. The generated words in
a sentence from the decoder w; is obtained from each of
the words 7™ that are the outputs that are also conditioned
on the generated words so far w;~" with 7" word in the
sentence being generated at the current step. The baseline
model is depicted in the right portion of the Figure 1.

Wy ~ [, Pr(wf |y, Ui, gi])

2. Skeleton Informed Baseline Model:  For a fair com-
parison with our proposed approaches, we condition the de-
coder on not only the glocal features and the words gener-
ated so far, but also the surface form of the words.

Wy ~ HT Pr(w[\wa, l:, g¢, ki)

3. Multitask Story Generation Model (MTG): Incor-
porating the entity skeleton information directly in the de-
coder might affect the language model of the decoder. In-
stead of augmenting the model with skeleton information,
we enable the model to predict the skeleton and penalize
it accordingly. The main task here is the generation of the
story itself and the auxiliary task is the prediction of the en-
tity skeleton word per time step. Each of these tasks are
optimized using cross entropy loss. The loss for genera-
tion of the story is L; and the loss to predict the skeleton of
the model is L,. We experimented with different weighting
factors for o which are presented in Table 3.

> aLy(Ly,ye) + (1= a)Llo(Ly, ye, ki)
I, xe Yyt €S

Note that we do not use & as a part of the encoder even
in this model but only use them to penalize the model when
the decoded sentence does not contain skeleton similar to k.

4. Glocal Hierarchical Attention: = This multitasking
model does not explicitly capture the relationship or focus
on the words within a sentence or across the five sentences
with respect to the skeleton in consideration. Hence, we
went one step further to identify the correlation between the
coreference skeleton with different levels including within
a sentence (i.e, at word level) and across sentences (i.e, at
sentence level). We use attention mechanism to represent
these correlations. Figure 1 depicts the entire glocal hierar-
chical attention model with the encoder decoder framework
on the right and the two stages of attention on the left.

Local Attention: This is to identify the correlation be-
tween words in each sentence to the coreference skeleton
words. Since we use the skeleton words as they appear to
attend to the words in DII, we use the surface form notation
in this model. As we have seen, the surface form skele-
ton is represented as C = {cy, ¢a.., ¢5 ;. The vocabulary of
these surface form skeleton words is limited to 50 words in
the implementation. The surface skeleton form C is passed
through a Bi-LSTM resulting in hidden state Hj which is of
1024 dimensions. This hidden state is used to perform at-
tention on the input words of DII for each image. Note here
that the skeleton words for coreference chains are extracted
from SIS (i.e, from {y1,y2..,ys5}), from which the hidden
state is extracted, which is used to perform attention on the
individual captions (DII i.e, {1, Z2.., 25} ). The skeleton
remains the same for all the sentences. The skeleton form is
passed through a Bi-LSTM resulting in H;, € R¥*2"_ where
hidden dimension of the Bi-LSTM is 4. Each x in the story
(with n words in a batch) is passed through a Bi-LSTM with
a hidden dimension of A, resulting in H,, € R5Xnx2h Thjg
then undergoes a non-linear transformation. Attention map
for the word level is obtained by performing a batch matrix
multiplication (represented by ®) between the hidden states
of the words in a sentence and the hidden states of the en-
tity skeleton. In order to scale the numbers in probability
terms, we apply a softmax across the words of the sentence.
Essentially, this indicates the contribution of each word in
the sentence towards the entity skeleton that is present as a
query in attention. This is the local attention A,, € R>*"*<F
pertaining to a sentence in the story.

Ay = softmaz(H,, @ Hy)

Glocal Attention: We then perform global attention, which
is at the entire story level. For this, the locally attended
representation of each sentence is then augmented with the
output of the Bi-LSTM that takes in DII. The attended rep-
resentation for each of the k words are concatenated and
projected through a linear layer into 256 dimensions (P,,).
This goes in as sentence representation for each of the s;;
(where i is the index of the sentence in the story and j cor-
responds to the story example) as shown in Figure 1. The
word representations at each time step are obtained by aug-
menting the corresponding vectors from H,, and P,,. These
form our new sentence embeddings. These sentence embed-
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Figure 2. Qualitative Analysis

dings are again passed through a Bi-LSTM to get a sentence
level representation. This process is done for each sentence
in the story (which are the replications as shown in the left
portion of Figure 1). This results in a latent representation
of the story H, € R%*2"_ Along the same lines of local
attention, we now compute story level hierarchical global
attention to result in A, € R5*F,

As = softmax([Hy, Py] ® Hy)

The attended vectors from A,, and A, of size nk and k
respectively are concatenated in each sentence step in the
decoder from the baseline model. This is shown in the top
right corner of Figure 1 (although the Figure depicts con-
catenation for single time step).

5. Quantitative and Qualitative Analysis

We perform automatic evaluation with METEOR score
for generation. The results are shown in Table 3. However,
our main target is to verify whether the story adheres to the
entity skeleton form that is provided. Hence we also com-
pute the distance between the binary vectors of length 5 con-
structed by extracting entities in ground truth and the gener-
ated stories (Dist. measure). As we can see, the Euclidean
Distance is not very different in each of the cases. How-
ever, we observe that the multitasking approach (MTG) is
performing better with nominalization form of entity skele-
tons as compared to the baselines and other forms of en-
tity skeleton representations as well. The glocal model de-
scribed performs attention on the surface words only and
hence the experiment includes only this configuration. We
observe that glocal attention model outperforms the base-
line model. However, there is a scope for improvement
when the attention mechanism is performed on nominalized
skeleton representation, which we leave for the future work.

To analyze the number of entities generated, we calcu-
lated percentages of nouns and pronouns in the ground truth
and generated stories, presented in Figure 3. In the nouns
section, baseline model seemed to have over-generated
nouns in comparison to both of our proposed models. While
MTG model also has over-generated the nouns, our glo-
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agreatgame !
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+ Important entities were . .. .
menioned - (ouisna. - Figure 3. Percentage of Entities in the
form of Nouns and Pronouns in the gen-

erated stories

cal attention model has generated fewer nouns compared
to ground truth. While the MTG model generated higher
number of pronouns in comparison to the baseline, the glo-
cal attention model seemed to have generated even higher
percentage of pronouns. Despite this over-generation, glo-
cal attention model is the closest to the number of pronouns
in the ground truth stories. Coming to the diversity of en-
tities generated in stories, we calculate the average number
of distinct entities present per story for each of the mod-
els. These numbers are shown in the last column of Table 3.
This number is closer to that of the ground truth for the glo-
cal attention model assuring that there is sufficient diversity
in the entity chains that are generated by this model.
Qualitative Analysis: Figure 2 presents an image sequence
for a story along with the corresponding ground truth (SIS)
and the generated stories. The positive and the negative
phenomena observed are presented in the last column. The
Glocal Hierarchical Attention Model is able to capture the
skeleton words right in comparison to the baseline model.
Human Evaluation: We conduct preference testing for 20
randomly sampled stories by asking 5 subjects the follow-
ing question ‘preferred story from images’. Our glocal hi-
erarchical attention model is preferred 82% and 64% of the
times compared to baseline model and MTG model with
nominalized representation respectively.

6. Conclusion and Future Work

Automatic storytelling has been a dream since the emer-
gence of AI.Our work is inspired from the intuition that hu-
mans form a central mindmap of a story before narrating it.
In this work, this mindmap is associated with entities (such
as persons, locations etc.,) to incorporate content relevance.
We present our work on introducing entity and reference
skeletons in the generation of a grounded story from visual
input. We observe that our MTG and glocal hierarchical
attention models are able to adhere to the skeleton thereby
producing schema based stories with seemingly on-par and
sometimes better results. These stories depict better natural-
ness in human evaluation. We plan on applying our methods
to other forms of conditions to generate storytelling such as
semantic representations, graphs and prompts.
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